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This paper deals with the development of guidance, navigation and control algorithms for a 
prototype of a miniature aerial delivery system capable of high-precision maneuvering and high 
touchdown accuracy. High accuracy enables use in precision troop resupply, sensor placement, urban 
warfare reconnaissance, and other similar operations. Specifically, this paper addresses the terminal 
phase, where uncertainties in winds cause most of the problems. The paper develops a six degree-of-
freedom model to adequately address dynamics and kinematics of the prototype delivery system and 
then reduces it to a two degrees-of-freedom model to develop a model predictive control algorithm for 
reference trajectory tracking during all stages. Reference trajectories are developed in the inertial 
coordinate frame associated with the target. The reference trajectory during terminal guidance, just 
prior to impact, is especially important to the final accuracy of the system. This paper explores an 
approach for generating reference trajectories based on the inverse dynamics in the virtual domain. 
The method results in efficient solution of a two-point boundary-value problem onboard the aerial 
delivery system allowing the trajectory to be generated at a high rate, mitigating effects of the 
unknown winds. This paper provides derivation of the guidance and control algorithms and present 
analysis through simulation. 

I. Introduction 
ANEUVERABLE ram-air parafoils are widely used today. The list of users includes skydivers, smoke 
jumpers, and Special Forces to name a few. Furthermore, their extended range compared to round parachutes 

makes them very practical for payload delivery. For round canopy parachutes the current requirement for a drop 
zone (DZ) size for the High Velocity Container Delivery System from 2,500m altitude as defined in the Joint U.S. 
Army / U.S Air Force Field Manual 5-430-00-21 is as large as 780m by 1,610m or a 1,255,800m2 (260 acres) 
footprint. During the latest humanitarian aid aerial delivery missions, such as the delivery of food, supplies and 
medications to war-torn areas like Bosnia, Sarajevo, Afghanistan, and Iraq 50% of payloads were never recovered. 
Such requirements for parafoils haven’t been developed because high-glide ratio delivery systems cannot glide to a 
specific location by themselves, but rather require a guidance, navigation and control (GNC) unit to produce and 
track the corresponding steering commands.2,3 

Recent introduction of the Global Positioning System (GPS) made the development of fully autonomous ram-air 
parafoils possible. Moreover, ram-air parafoils are considered a vital element of the unmanned air vehicles 
capability,4-6 can be used in conjunction with a space station crew rescue,7-10 and in some other applications.11 
Autonomous parafoil capability implies delivering the system to a desired landing point from an arbitrary (limited 
by winds, deployment condition and system performance) release point using an onboard computer, sensors and 
actuators. The navigation subsystem manages data acquisition, processes sensor data, and provides guidance and 
control subsystems with information about parafoil states. Using this information along with local wind profiles, the 
guidance subsystem plans the mission and generates a feasible trajectory to the desired landing point. Finally, it is 
the responsibility of the control system to track this trajectory using the information provided by the navigation 
subsystem and onboard actuators. 

The need for development of the fully autonomous different-weight aerodynamic decelerator systems emerged 
just in the past decade. Natick Soldier Center, Natick, MA pursues and pushes the development of the new 
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generation joint precision aerodynamic delivery systems (JPADS) capable of achieving a breakthrough accuracy of 
less the 100m circular error probable (CEP).12 The underlying concept to be employed on every system is to have a 
field-laptop-based JPADS Mission Planner (developed by Planning Systems, NOA/FSL and DL) that can predict the 
winds at different altitudes with unprecedented accuracy.13-15 Wind prediction enables computation of the required 
release point from the airdrop cargo airplane. Improved Container Delivery System developed for 26’ Ring Slot or 
G-12 unguided ballistic parachutes along with JPADS-Mission Planner allows reduction of the DZ to 109m by 
219m or 23,937m2 (5 acres), i.e. 52 times smaller then for the conventional systems that do not have the JPADS 
Mission Planner. The authors were lucky to participate in the program of the development of the Affordable Guided 
Aerodelivery Systems16 that not only employed JPADS-Mission Planner, but also by relatively inexpensive means 
allowed conversion of regular ballistic (dumb) circular parachutes into a guided system.17 The accuracy achieved 
with this system is even smaller than 5-acre-footprint and remains on the order of potentially more accurate parafoil-
based systems.18 

The ultimate goal for the perspective delivery system is to have payloads delivered from the large standoff 
distances with <100m CEP accuracy. So during the last decade, several GNC concepts for gliding parachute 
applications have been developed and published.19-31 Specifically, the best systems were demonstrated during 
Precision Airdrop Technology Conference and Demonstration PATCAD-2001, PATCAD-2003, PATCAD-2005 
and PATCAD-2007 at U.S. Army Yuma Proving Ground, Yuma, AZ, and Precision Airdrop Demonstration 
Capability PCAD-2006 and PCAD-2008 near Toulouse, France.32-34 

Analyzing the results of dozens of airdrops it can be stated that the most accurate systems can only achieve 
100m-150m accuracy (excluding SPADES by Dutch Space25 that assures about 40m-60m accuracy). More detailed 
analysis reveals that GNC systems developed by Charles Stark Draper Laboratory,20-24 Georgia Tech29-31 and others 
implement simple proportional-integral-derivative (PID) controllers to track the reference heading, which is 
assigned based on a combination of some logics and heuristic rules. For the final stage of descent to the DZ some 
controllers use a moth mode, others attempted to utilize a precomputed landing trajectories data base.24 Though 
some of the systems utilize JPADS Mission Planner they only use it to compute a release point, but they do not use 
its winds prediction during the following control. 

This paper builds on the generic GNC algorithm developed earlier27,28 and specifically concentrates on the 
terminal phase of guided descent, where the majority of errors contribute to the final touchdown accuracy. The paper 
is organized as follows. Section II overviews the overall control strategy consisting of six phases that follow each 
other upon loosing altitude during a descent. Section III features the Model Predictive Control (MPC) used to track 
the desired trajectory at each phase.27,28 Section IV introduces a six degree-of-freedom model of a generic parafoil 
delivery system and characterizes the linearized model, developed for use with MPC. Section V provides details of 
the simple straightforward control algorithm during the final phase (turning base), while Section VI deals with the 
more sophisticated adaptive optimal control for this final phase. The paper ends with several computer simulations 
and conclusions. 

II. Guidance Strategy 
In the current design five parameters need to be defined by the user before deployment. The five parameters are: 

target location, away distance, cycle distance, turn diameter, and wind heading angle. These five parameters define 
five fixed tracking points, which are the Target, A, B, C, and D as shown in Fig.1. Using these five points, the ADS 
precision placement objectives are defined. As shown in Fig.1, trajectory planning for precision placement is 
divided into six phases. They are as follows: 

- Phase 0: After canopy opening, guidance is delayed to allow oscillations to cease; 
- Phase 1: The initial phase is used to reach the loitering area (bounded by points A, B, C, and D), where it 

is assumed that the system is released upwind of the loiter area; 
- Phase 2: Loitering is commenced. The system estimates, winds, descent rate, and the altitude at which to 

turn towards the target. The loiter area is defined by four points A, B, C, and D. As stated above 
these four points are determined by the target location, wind direction, away distance, cycle 
distance, and turn diameter. During loiter, winds are estimated when traveling from A to B and 
from C to D (long parallel legs). Ideally, at least one complete loop around A, B, C, and D is 
completed. Winds, distance to the target, and vertical velocity are used to determine a switching 
altitude zstart to start the downwind leg towards the target (as explained in Section V). When the 
measured altitude reaches zstart Phase 2 is terminated and the system turns toward the target; 

- Phase 3: Wind estimation is halted as the loiter area is exited; 
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- Phase 4: Wind estimate is reinitiated as the system travels toward the target. All estimated data is used to 
determine a distance Dswitch past the target to make a final turn and approach. When the distance 
Dswitch is reached Phase 5 is initiated; 

- Phase 5: A 180-degree turn to the final approach glide slope; 
- Phase 6: Final approach and landing into the wind. 

 

Away Distance Cycle Distance

Diameter

Wind

XAB

C
Target

D
Release

x x

x x

Optimal Final
Approach

x

PHASE 0
PHASE 1
PHASE 2

PHASE 3
PHASE 4
PHASE 5
PHASE 6

 
Fig.1   Guidance strategy. 

 
The precision placement algorithm tracks a desired heading using a model predictive control (MPC) described in 

Sections III and IV. In each phase the current position and desired tracking points are used to determine a desired 
heading of the system. Prior to terminal guidance (phases 0 through 4) the desired heading is found simply by 
heading directly to the next tracking point. However, in the critical final phases the desired heading is found by 
rapidly calculating an optimal trajectory, detailed in Sections V and VI. 

III. Model Predictive Control 
Consider a simple Single-Input Single-Output (SISO) discrete system described in state space form as: 

1k k k

k k

u
y
+ = +
=

x Ax B
Cx

         (1) 

(Hereinafter bold font for lower-case symbols denotes vectors and bold font for upper-case symbols denotes 
matrices). Assume that the system matrices A, B, and C are known and that kx  is the state vector, ku is the control 
input, and ky  is the output at time k . The model described above can be used to estimate the future state of the 
system. Assuming a desired trajectory kw  is known an estimated error signal ˆ ˆk k ke w y= −  is computed over a finite 
set of future time instants called the prediction horizon, pH (hereinafter the symbol “^” is used to represent an 
estimated quantity). In model predictive control, the control computation problem is cast as a finite time discrete 
optimal control problem. To compute the control input at a given time instant, a quadratic cost function is minimized 
through the selection of the control history over the control horizon. The cost function can be written as: 

( ) ( )ˆ ˆT TJ = − − +W Y Q W Y U RU ,     (2) 

where 

1 2[ , ,..., ]
p

T
k k k Hw w w+ + +=W ,              (3) 

ˆ
CA k CAB= +Y K x K U ,          (4) 

1 1[ , ,..., ]
p

T
k k k Hu u u+ + −=U ,             (5) 

and both R and Q are symmetric positive semi-definite matrices of size pH  x pH . Equation 1 is used to express the 

predicted output vector Ŷ  in terms of the system matrices 
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2

p

CA

H

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

CA

CA
K

CA

,        (6) 

2

1 2

0 0 0 0
0 0 0

0 0
0

p

CAB

H −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

CB
CAB CB

CA B CAB CBK

CA B CA B CAB CB

.    (7) 

The first term in Eq.(2) penalizes tracking error, while the second term penalizes control action. Equations (2), 
(6), and (7) can be combined resulting in the cost function 

( ) ( )T T
CA k CAB CA k CABJ = − − − − +W K x K U Q W K x K U U RU               (8) 

that is now expressed in terms of the system state kx , desired trajectory W, control vector U and system matrices A, 
B, C, Q, and R. 

The control U, which minimizes Eq.(8), can be found analytically as 
( )CA k= −U Κ W K x ,           (9) 

where 

( ) 1T T
CAB CAB CAB

−
= +Κ K QK R K Q .      (10) 

Equation 10 contains the optimal control inputs over the entire control horizon, however at time k only the first 
element ku  is needed. The first element ku  can be extracted from Eq.(9) by defining 1Κ  as the first row of K. The 
optimal control over the next time sample becomes 

( )1k CA ku = −Κ W K x ,          (11) 
where calculation of the first element of the optimal control sequence requires the desired trajectory W over the 
prediction horizon and the current state kx . 

IV. Parafoil Modeling 
The full combined flexible system of the parafoil canopy and the payload can be represented as a 9 or 8 degree-

of-freedom (DoF) model depending on the specific harness connecting these two pieces together. Alternatively it 
can also be modeled as a solid structure requiring only six-DoF, which include three inertial position components of 
the system mass center as well as the three Euler orientation angles of the parafoil-payload system. This section first 
introduces a six-DoF model of a generic parafoil system that will be used for simulation and GNC algorithm 
development, and then addresses a simplified model used to compute the MPC gains appearing in Eq.(11). 

A. Six DoF Model 
Figure 2 shows a schematic of a parafoil and payload system. With the exception of movable parafoil brakes, the 

parafoil canopy is considered to be a fixed shape once it has completely inflated. A body frame {B} is fixed at the 
system mass center with the unit vectors Bi  and Bk  orientated forward and down. Orientation of the parafoil 
canopy with respect to the body frame is defined as the incidence angle Γ. 

Orientation of the body frame {B} is obtained by a sequence of three body-fixed rotations. Starting from the 
inertial frame {I}, the system is successively rotated through Euler yaw ψ, pitch θ, and roll φ. The resulting 
transformation from the inertial to body frame is 

IB

c c c s s
s s c c s s s s c c s c
c s c s s c s s s c c c

θ ψ θ ψ θ

φ θ ψ φ ψ φ θ ψ φ ψ φ θ

φ θ ψ φ ψ φ θ ψ φ ψ φ θ

⎡ ⎤−
⎢ ⎥= − +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

T ,          (12) 
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where the common shorthand notation for trigonometric functions is employed, so that for any angle α  sin( ) sαα ≡  
and cos( ) cαα ≡ . Translation kinematics of the system become 

T
IB

x u
y v
z w

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

T ,      (13) 

where x, y, and z are the inertial positions and u, v, and w are body frame velocities. Defining the angular velocity of 
the parafoil payload system as: 

B I B B Bp q r= + +ω i j k             (14) 
results in the following rotational kinematics equations: 

1 1

1
0

0

s t c t p
c s q

rs c c c

φ θ φ θ

φ φ

φ θ φ θ

φ
θ
ψ − −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

               (15) 

( tan( )tα α≡ ). 

−Γ
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Ik
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Pi
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M
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aV

Bk

 
Fig.2   A generic 6-DoF parafoil-payload system. 

 
Forces and moments acting on the parafoil and payload have contributions from: weight, aerodynamic loads, and 

apparent mass of the canopy. Weight contribution of the system is expressed in the body frame, 

g

s
s c mg
c c

θ

φ θ

φ θ

⎡ ⎤−
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F ,      (16) 

with m being the system mass and g the acceleration from gravity. Aerodynamic forces and moments have 
contributions from both the canopy and payload. Both canopy and payload contributions are combined into a single 
aerodynamic model using standard aerodynamic derivatives. The aerodynamic force is modeled as: 

2
2 0 2

0
2

D D
a p

a AB Y

L L

C C
V S

C
C C

α

β

α

α
ρ

β
α

⎡ ⎤+
⎢ ⎥

= ⎢ ⎥
⎢ ⎥+⎣ ⎦

F T ,     (17) 

where; α and β are the angle of attack and sideslip of the body frame, aV  is the true airspeed, pS  is the parafoil 

canopy area, and ABT  is the transformation from the aerodynamic to body frame by the angle of attack α. Similarly, 
the aerodynamic moment is written as: 
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1

1

2 2
2

0 2

2 2

( ) )

( )
2

( )

a a

a

a a

b b
l lp lr l a aV V

a p c
a m m mqV

b b
n np nr n a aV V

b C C C r d C
V S

c C C C q

b C C p C r d C

β δ

α

β δ

δ
ρ

α

δ

−

−

⎡ ⎤+ + +
⎢ ⎥
⎢ ⎥

= + +⎢ ⎥
⎢ ⎥

+ + +⎢ ⎥
⎣ ⎦

M        (18) 

where, b  and c  are the canopy span and chord, aδ  is the asymmetric brake deflection, and d  is the maximum 
brake deflection. Parafoil canopies with small mass to volume ratios can experience large forces and moments from 
accelerating fluid called “apparent mass.” They appear as additional mass and inertia values in the final equations of 
motion. Parafoil canopies with small arch-to-span ratios and negligible camber can be approximated to useful 
accuracy by an ellipsoid having three planes of symmetry; however, the planes of symmetry in the canopy frame 
may not be aligned with the body frame, as shown in Fig.2. Apparent mass forces and moments for an 
approximately ellipsoidal canopy can be conveniently defined using the translation and angular velocities expressed 
in the canopy frame {P}. Defining BPT  as the single axis transformation from the body to canopy reference frame 

by the incidence angle Γ, [ ], , T
BM BM BM BMx y z=r  as the vector from the system mass center to the apparent mass 

center, and W  as the wind vector, the velocity of the canopy at the apparent mass center can be expressed in the 
canopy frame as: 

BM
B

BP BM IB

BM

u u x
v v y
w w z

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + −⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

ωT S T W ,     (19) 

where the second term represents the vector cross product using the skew-symmetric matrix B
ωS , constructed as 

follows: 
0

0
0

z y
A

z x

y x

ξ ξ

ξ ξ
ξ ξ

−⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−⎣ ⎦

ξS          (20) 

(here xξ , yξ  and zξ  are the components of vector ξ  expressed in a coordinate frame {A}). 
Similarly, the angular velocity expressed in the canopy frame {P} becomes 

BP

p p
q q
r r

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

T .              (21) 

Forces and moments from apparent mass and inertia are then found by relating the fluid’s kinetic energy to 
resultant forces and moments.35 Apparent mass and inertia contributions expressed in the body frame can be written 
as: 

. . . . . .
T P

a m BP a m a m

u u
v v
w w

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= − +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

ωF T I S I ,                (22) 

. . . . . .
T P

a i BP a i a i

p p
q q
r r

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= − +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

ωM T I S I ,               (23) 

where 

. .

0 0
0 0
0 0

a m

A
B

C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I  and . .

0 0
0 0
0 0

a i

P
Q

R

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I .       (24) 

(Apparent mass and inertia values A, B, C, P, Q, and R appearing in Eq.(24) can be calculated for known simple 
shapes or can be approximated as discussed in Ref.35.) 
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Dynamic equations are formed by summing forces and moments about the system mass center, both in the body 
reference frame, and equating to the time derivative of linear and angular momentum. Final dynamic equations of 
motion are expressed compactly in matrix form below, where for the quantities in Eq.(24) the common convention is 
used for tensors of second rank such that T

BP BPξ ξ′ =I T I T : 

3 3 . . . .

. . . . . .

+
BM

BM BM BM

B
a m a m r

B B B
a m a i a m

u
v

m w

p
q
r

×

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤′ ′− ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ ′+ − ⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

r r r

I I I S F

ΜS I I I S I S

,    (25) 

where 3 3×I  is the identity matrix, 
0

0 0
0

xx xz

yy

xz zz

I I
I

I I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I , 

. . . .
B T P B

a g BP a m a m IB

u u
m v v

w w

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ′= + − − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

ω ω ωF F F S T S I I S T W ,     (26) 

. . . . . .BM BM

B B T P T P B B
a BP a m BP a i a m IB

p u p
q v q
r w r

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ′= − − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ω r ω ω r ωΜ M S I S T S Ι T S I S I S T W .       (27) 

B. Linearized Model 
The guidance strategy outlined in Section II requires a simple SISO controller with yaw as an output and the 

brake deflection aδ as the control. A simple 2-DoF model of the roll and yaw dynamics is used since for parafoils 
pitch and speed are not typically controllable. The state vector x for the 2-DoF rotational model contains roll, yaw, 
roll rate, and yaw rate: 

[ , , , ]Tp rφ ψ=x .                (28) 
Equations (15) and (25) describe the nonlinear rotational kinematics and dynamics. However, for MPC (1) a 

linear discrete model is required. Assuming that the aerodynamic velocity aV  is constant, Eqs.(15) and (25) can be 
numerically linearized about the steady state 

0

0 0

0
0

0

0

0

0

0
0
0
0a

p
q
r

φ
θ θ

δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

s .                 (29) 

With the convention 0
∗ = −s s s  t the resulting linear discrete model for the parafoil with parameters listed in the 

Appendix and sampling period of 0.5s is: 

;

1

0.962 0 0.153 0.012 0.006
0.0078 1 0.011 0.043 0.0501

0.103 0 0.033 0.004 0.0131
0.0191 0 0.0023 0.003 0.1098

a k

k k

p p

r r

φ φ

ψ ψ
δ

∗ ∗

∗ ∗

∗ ∗

∗ ∗
+

⎡ ⎤ ⎡ ⎤ −⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

.          (30) 

Matrices given by Eq.(30), along with the output matrix C = [0 1 0 0] define the optimal brake deflection aδ  
according to the MPC algorithm in Eq.(11). 
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V. Terminal Guidance 
The last three phases introduced in Section II (Phases 4-6) are the most critical stages of parafoil guidance. The 

system must be dropped up wind of the target to ensure it can be reached, however, it is desired to impact the target 
traveling into the wind to reduce ground speed. In addition it is beneficial to arrive near the target with excess 
altitude in order to make final guidance decisions. Finally, there is a very strict time limitation. The ADS can be 
slightly late or earlier departing/arriving to all other phases, but this last Phase 6 ends sharply at landing. All this 
means that special precautions have to be made in building a control algorithm for the terminal phase. 

First, assume that there is no cross wind component, i.e. that the ground winds uploaded to the system before 
deployment have not changed. An ideal terminal guidance trajectory can be defined as outlined in Fig.3, where the 
following notations are used (Fig.3 represents the left approach pattern, but everything will be the same for the right 
pattern as well.): 

, ,x y z  – a standard right-handed North-East-Down coordinate frame with the origin at the target; 

startt  – time corresponding to the beginning of the downwind leg (Phase 4); 

0t  – time corresponding to the beginning of the final 180°-turn (Phase 5); 

1t  – time corresponding to intercepting the final approach (Phase 6); 

exitt  – time when guidance switches from Phase 5 to Phase 6; 

2t  – time of touchdown; 
L  – distance away from the target line; 

switchD  – optimal distance to pass the target (initiating a final turn at 0t  should achieve the desired 
impact location); 

1 0turnT t t= −  – final turn time; 

2 1appT t t= −  – final approach time, determining 0t  and 

switchD  (a large value allows correction 
for terminal errors and reduces errors 
from changing winds, while a small value 
reduces errors during final approach); 

R  – final turn radius; 
W  – wind (positive when coming from the Ix  

direction and negative as shown in Fig.2); 
( )tψ  – final turn function for parafoil to track 

during the final turn; 

turnD WT=  – distance defined by imperfection 
(asymmetry) of the final turn because of 
the wind. 

The terminal guidance problem can be summarized as 
follows. For a parafoil in the presence of wind W, at altitude z , 
and a distance L from the target, find the distance switchD  to the final turn initiation point (TIP), required to travel 

past the target for an ideal impact at 2t  (of course, switchD  is a function of the desired des
appT .) 

In general, the dynamic model of a parafoil is complex and nonlinear, so that the problem can only be solved 
numerically. However, in what follows we will make some assumptions, allowing an analytical solution to be used 
as a reference trajectory in the control algorithm. These assumptions are: a) the turn rate is slow, so that the roll and 
sideslip angles can be ignored, and b) the descent rate *

vV  and air speed *
hV  are viewed as nearly constant (defined 

by the canopy, lines, etc. and treated as the known values). In this case it immediately follows that 

2 *
start

start
v

z
t t

V
= − .      (31) 

The problem reduces to handling a simple kinematic model represented by three components of the ground 
velocity as: 

xx
switchD

D

L

( )tψ

0t
1t

2t

W startt

R

TARGETx
y

exitt

 
Fig.3   Terminal guidance maneuver. 
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*

*

*

cos

sin
h

h

v

W Vx
y V
z V

ψ

ψ

⎡ ⎤− +⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

.          (32) 

Now, the reference turn function ( )tψ  can be chosen as any function that satisfies the boundary conditions 

( )0 0tψ =  and ( )1tψ π= −  (for the left pattern as shown on Fig.3). For instance, for a linear turn (constant turn rate) 
the solution to the required turn rate and the final turn time turnT  are provided by: 

*
hV
R

ψ = −   and  *turn
h

RT
V
π

= .           (33) 

Hence, the most straightforward algorithm to control the descending system at the terminal phase is to control its 
turn rate for example as follows: 

*
c hV

R
ψ = ∓               (34) 

(the plus-minus signs correspond to the left and right turn, respectively). After the final turn the system travels 
directly to the desired target. Assuming that the wind W is constant all way down and a constant turn rate (33), 
integration of inertial velocities along axes x and y from startt  to 2t  (Phases 4-6) yields two simple equalities: 

1 2

0 1

*( ) 0
t t

switch switch turn h app
t t

D xdt xdt D WT V W T− − = − − + =∫ ∫ ,     (35) 

* * *
* 0switch

v v turn v app
h

L D
z V V t V t

V W

⎛ ⎞+
+ + + =⎜ ⎟⎜ ⎟−⎝ ⎠

.                     (36) 

Resolving them with respect to switchD  and a appT  results in 
*2 2

* * *2
h turn

switch turn turn
h v h

V W L WTzD WT T
V V V W

⎛ ⎞⎛ ⎞− +−
= + − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

,     (37) 

*

* * *2 2
h turn

app turn
h v h

V W L WTzT T
V V V

⎛ ⎞⎛ ⎞− +−
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

.         (38) 

From Eqs.(37) and (38) it can be seen that the higher the altitude z , the larger switchD  and appT  become. As the 

parafoil loiters upwind of the target, startz  the altitude at which to turn towards the target can be found by using a 

desired final approach time des
appT . The switching altitude to achieve des

appT  is then given by solving Eq.(38) for z  
leading to the following expression: 

**
* *

* * *

( 2 )2 des
h turn appdesturn h

start v turn app v
h h h

L V T TL WT V
z V T T V

V W V W W V

+ +⎛ ⎞+
= − + + =⎜ ⎟⎜ ⎟− − −⎝ ⎠

.               (39) 

Once the system is traveling towards the target the goal is to bring the system from its initial state at the top of 
the downwind led to the point defined by T switchx D=  and 2Ty R= ∓  (for the left and right turn, respectively). The 

distance ˆ
switchD  is estimated during the downwind leg constantly using the analogue of Eq.(37): 

*2 2 *2 2 * * * * *

* * * * *

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆˆ ( ) ( ) ( )ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ2 2

h turn h h v turn h v h
switch turn turn

h v h h v

V W x WT z V W V V T V W xV V WzD WT T
V V V W V V

⎛ ⎞⎛ ⎞− + − + − + +−
= + − − = −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

, (40) 

where *
ĥV , *

v̂V  and Ŵ  are the estimates of the corresponding parameters at current position ( x̂ , ẑ ). Note, Eq.(40) 

produces the value of ˆ
switchD  in the assumption that *

hV , *
vV  and W  remain constant from the current altitude all 

way down. 
Figure 4 demonstrates simulation results for the ideal case when all parameters (horizontal airspeed, descent rate, 

wind) are assumed to be estimated with no errors, there are no disturbances, and the commanded yaw rate is tracked 
precisely. Specifically, for horizontal airspeed of 22.4ft/s, descent rate of 10ft/s, wind of -10ft/s, turn radius of 125ft, 
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and the desired final approach time des
appT  of 7.5s, the maneuver starts at the altitude of 561.36ft (L=750ft). The 

distance switchD  is estimated to be -82.3ft, it takes 17.5s to make a full turn, and the system touches down precisely 
on target in 45.65s. 

 

a)  b)  
Fig.4   Simulated guidance in ideal conditions: 3D trajectory (a), horizontal projection and the time history of the yaw 

angle (b). 
 

In practice, sensor errors, variable winds (magnitude and direction), and imperfect control will certainly disturb 
the ideal touchdown depicted above. For example, Table 1 provides measurement errors typical for the GNC unit 
used. Winds can change (and are changing) all the time. Let us illustrate how inaccuracies in measuring ADS 
position errors arriving at the TIP and variable winds may affect the touchdown accuracy. 

 
Table 1.   Errors in measuring the ADS states. 

Parameter Bias Standard deviation 
Altitude z 10 ft 1 ft 

Descent rate z  0 ft/s 2 ft/s 
Roll angle φ  1.5 ° 1.5 ° 
Yaw angle ψ  3 ° 1.5 ° 

Roll rate p 1 °/s 1.5 °/s 
Yaw rate r 1 °/s 1.5 °/s 

 
Figure 5 shows Monte Carlo simulations where two cases were considered. First, it was assumed that the 

downwind leg ends up with some error in the ADS horizontal position and heading. The standard deviation of 
horizontal position error in each coordinate was assumed to be 20ft and the standard deviation in heading 10 º. As 
seen from Fig.5a these errors result in spreading the arrival to the final approach point. The situation is even worse 
when unaccounted winds are acting on the ADS during the final turn. 

For simulations shown in Fig.5b, the standard deviation for wind disturbances applied at each integration step of 
0.05s was only 3ft/s (with a zero mean value) in both x and y direction, but as shown it led to a drastic degradation 
of the overall performance. Obviously, if we add a constant (unmeasured wind) that acts on the system all way down 
in any direction it will simply blow the ADS off the desired trajectory. This is the worst case scenario. Now the 
question is how to mitigate the effect of changing winds? 

The control algorithm only provides indirect estimates of the wind based on the difference between the parafoil’s 
measured ground speed and its steady state speed components, *

vV  and *
hV . Again, these estimates are only valid for 

the current altitude and provide no prediction of future winds at lower altitudes. Therefore, rather than trying to 
better estimate current winds, the authors proceeded with the development of a robust algorithm accounting for 
constantly varying winds during the final turn and compensate for them by changing the yaw rate command. The 
next section addresses this algorithm based on the inverse dynamics in the virtual domain in more detail. 
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a)   b)  
Fig.5   Final turn trajectories with not precise initial conditions (a) and unaccounted winds (b). 

 
VI. Optimal Terminal Guidance 

To overcome the difficulties of fighting unaccounted winds the following two-point boundary-value problem 
(TPBVP) was formulated. Staring at some initial point at 0t =  with the state vector defined as [ ]0 0 0 0, , Tx y ψ=x  

we need to bring our ADS influenced by the last known constant wind [ ],0,0 TW=w  to another point, 

( )* ,0,
Tdes

f h appV W T π⎡ ⎤= + −⎣ ⎦x  (for consistency with the previous section we will consider a left pattern turn) at 

ft t= . Hence, we need to find the trajectory that satisfies these boundary conditions along with a constraint imposed 

on control (yaw rate), maxψ ψ≤ , while finishing the maneuver in exactly turnT  seconds (if needed, the performance 
index may also include additional terms related to the compactness of the maneuver and/or control expenditure). The 
found optimal control ( )opt tψ  is then tracked by the ADS GNC unit using the MPC algorithm in Sections III and IV. 

Unaccounted winds , ,0
Tdist

x yw w⎡ ⎤= ⎣ ⎦w  (the vertical component will be accounted for indirectly via estimating the 

current v̂V ) will not allow exact tracking of the calculated optimal trajectory. Computation of the optimal trajectory 
will be updated during the final turn, each time starting from the current (off the original trajectory) initial conditions, 

requiring the ADS to be at ( )* ,0,
Tdes

f h appV W T π⎡ ⎤= + −⎣ ⎦x  in turnT seconds from the beginning of the turn. The 

remaining time until arrival at the final approach is computed as 
ˆ
ˆ

final
f app

v

zt T
V

= − − ,       (41) 

where final
appT is the final calculated approach time from Eq.(38) before entering the final turn. 

Development of the optimal trajectory algorithm begins by recalling from Eq.(32) the horizontal trajectory 
knimematics: 

*

*

cos

sin
h

h

W Vx
y V

ψ

ψ

⎡ ⎤− +⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
.            (42) 

Recognizing that if the final turn horizontal trajectory is given by Eq.(42) the yaw angle along this trajectory is 
related to the change of inertial coordinates as follows: 

1tan y
x W

ψ −=
+

.                    (43) 

Differentiating (43) provides the yaw rate control required to follow the reference final turn trajectory in presence of 
constant wind W: 
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2 2
( )

( )
y x W xy
x W y

ψ + −
=

+ +
.     (44) 

The inertial (ground) speed along the trajectory will also depend on the current yaw angle: 
2 2 *2 2 *2 cosG h hV x y V W V W ψ= + = + − .        (45) 

Now, following the general idea of direct methods of calculus of variations (e.g., see Ref.36) we will assume the 
solution of the TPBVP to be represented analytically as functions of some scaled abstract argument 

/ [0;1]fτ τ τ= ∈ : 
1 1 1 2 1 3 1 1

1 0 1 2 3 1 2
2 2 2 2 2 3 2 2

2 0 1 2 3 1 2

( ) ( ) sin( ) sin(2 ),

( ) ( ) sin( ) sin(2 ).

x P a a a a b b

y P a a a a b b

τ τ τ τ τ πτ πτ

τ τ τ τ τ πτ πτ

= = + + + + +

= = + + + + +
         (46) 

The coefficients iaη  and ibη  ( 1, 2η = ) in these formulas are defined by the boundary conditions up to the second-
order derivative at 0τ =  and fτ τ=  ( 1τ = ). According to the problem formulation and Eq.(42) these boundary 
conditions are as follows: 

0

00

xx
yy τ =

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
, 

*
0

*
0 0

cos

sin
h

h

W Vx
y Vτ

ψ

ψ=

⎡ ⎤− +⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
, 

*
0 0

*
0 0 0

sin

cos
h

h

Vx
y Vτ

ψ ψ

ψ ψ=

⎡ ⎤−⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦
,             (47) 

( )*

0f

des
h appV W Tx

y τ τ=

⎡ ⎤+⎡ ⎤
⎢ ⎥=⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

, 
*

0
f

hx W V
y τ τ=

⎡ ⎤⎡ ⎤ − −
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
, 

0
0

f

x
y τ τ=

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
.          (48) 

While the final conditions (48) will be constant (the second derivatives are zeroed for a smooth arrival), the 
initial conditions will reflect the current state of the system at each cycle of optimization. Let us now differentiate 
Eqs.(46) two times with respect to τ to get: 

2
1 2 3 1 2

2 2 2
2 3 1 2

( ) = 2 3 cos( ) 2 cos(2 ),

( ) = 2 6 sin( ) (2 ) sin(2 ).
f

f

P a a a b b

P a a b b

η η η η η
η

η η η η
η

τ τ τ τ π πτ π πτ

τ τ τ π πτ π πτ

′ + + + +

′′ + − −
       (49) 

Equating these derivatives at the terminal points to the known boundary conditions (47)-(48) yields a system of 
linear algebraic equations to solve for coefficients iaη  and ibη  ( 1,2η = ). For instance, for the x-coordinate we’ll get 

1
00

1
1
1 0
2
1
3

21 01
21

2

1 0 0 0 0 0
1 1 1 1 0 0
0 1 0 0 2
0 1 2 3 2
0 0 2 0 0 0
0 0 2 6 0 0

f

f

f f

f

f f

xa
xa

xa
xa
xb
xb

τπ π
τπ π
τ

τ

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ′⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ′′⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ′′⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

                    (50) 

Being resolved this system yields 
2 2 2

0 0 01 1 1 1
0 0 1 0 2 3

2 2
0 0 0 0 01 1

1 2

(2 ) ( )
, ( ) , , ;

6 2 6
2( ) ( ) 12( ) 6( ) ( )

, .
4 24

f f f f f
f

f f f f f f f f f

x x x x x
a x a x x a a

x x x x x x x x x x
b b

τ τ τ

τ τ τ τ
π π

′′ ′′ ′′ ′′ ′′+ −
= = − − + = = −

′ ′ ′′ ′′ ′ ′ ′′ ′′− + + − + + + −
= =

         (51) 

The only problem is that the derivatives in Eqs.(51) are taken in the virtual domain, while the actual boundary 
conditions are given in the physical domain. Mapping between the virtual domain [0; ]fτ  and physical domain 

[0; ]ft  is addressed by introducing a speed factor λ: 

d
dt
τλ = ,            (52) 

Using this speed factor we may now compute corresponding derivatives in the virtual domain using the obvious 
differentiation rules valid for any time-variant parameter ξ: 
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ξ λξ ′= , ( )ξ λ λ ξ λξ′ ′ ′′= + .          (53) 
Inverting Eqs.(53) yield: 

1ξ λ ξ−′ = , 2 1ξ λ ξ λ λ ξ− −′′ ′= − .            (54) 
Note that we only need to use Eqs.(54) once to transfer the boundary conditions. Since the speed factor λ simply 
scales the entire problem – the higher speed factor λ  is, the larger fτ  it results in (see explanation in Ref.37) – we 
may let 

0; 1fλ =  and 0; 0fλ′ = ,        (55) 
which means we can safely assume 

ξ ξ′ = , ξ ξ′′ = .               (56) 
Now let us describe the numerical procedure for finding the optimal solution among all candidate trajectories 

described by Eqs.(46). First, we guess the value of the only varied parameter fτ  and compute the coefficients of the 
candidate trajectory using Eqs.(51) with the boundary conditions (47) and (48) converted to the virtual domain via 
Eqs.(54) (accounting for Eqs.(55)). For the initial value of fτ  we can take the length of the circumference 
connecting terminal points: 

2 2
0 0( ) ( )

2f f fx x y yπτ = − + − .              (57) 

Having an analytical representation of the candidate trajectory, Eqs.(46) and (49), define the values of jx , 

jy , jx′ , and jy′ , 1,...,j N=  over a fixed set of N points spaced evenly along the virtual arc [0; ]fτ  with the interval 
1( 1)f Nτ τ −Δ = − ,                 (58) 

so that 
1j jτ τ τ−= + Δ , 2,...,j N= , ( 1 0τ = ).    (59) 

Then, for each node 2,...,j N=  we compute 
2 2

1 1
1 *2 2 *

1

( ) ( )

2 cos
j j j j

j
h h j

x x y y
t

V W V W ψ
− −

−
−

− + −
Δ =

+ −
                 (60) 

( 1 0ψ ψ≡ ), and 
1
1j jtλ τ −
−= Δ Δ .               (61) 

The yaw angle ψ  can now be computed using the virtual domain version of Eq.(43): 

1tan j j
j

j j

y
x W
λ

ψ
λ

− ′
=

′ +
.        (62) 

Finally, the yaw rate ψ  is evaluated using Eq.(44) (with time derivatives evaluated using Eq.(53)) or simply as 
1

1 1( )j j j jtψ ψ ψ −
− −= − Δ .        (63) 

When all parameters (states and controls) are computed in each of the N points, we can compute the performance 
index 

2
1

1

N

j turn
j

J t T kψ
−

=

⎛ ⎞
⎜ ⎟= Δ − + Δ
⎜ ⎟
⎝ ⎠
∑ ,            (64) 

where 

( )2maxmax 0; j jj
ψ ψΔ = −           (65) 

with kψ  being a scaling (weighting) coefficient. Now the problem can be solved say in the Mathworks’ 
development environment with as simple built-in optimization function as fminbnd. It should be noted that the 
numerical algorithm based on the direct method introduced in this section with the non-gradient optimization routine 
fminbnd based on the straight forward golden section search and parabolic interpolation algorithm allows computing 
the optimal turn trajectory very fast. To be more specific a 16bit 80MHz processor, allowed computation of the 17.5 
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second turn maneuver with N = 20 in 10 iterations, which took only 0.07s all together. With the controls update rate 
of 0.25s that means that the trajectory can be updated as often as every control cycle. 

As a demonstration of the proposed approach, Fig.6 shows an example of the optimal final turn trajectory, which 
is essentially the same as in Fig.4b. However, as opposed to Fig.4b the yaw angle changes smoothly at departure 
from TIP and arrival to the top of the final approach. As a result the turn trajectory is slightly different from that of 
Fig.4b, but what is of the most importance is that ADS captures the final approach glide slope in exactly turnT  
seconds as Fig.4b trajectory does. 

Therefore, now we have a tool allowing us to construct the optimal trajectory from any initial point to the 
predetermined final point to be achieved in a certain time. To this end, even if we get to the TIP with errors as 
shown in Fig.4a, we can easily accommodate these errors and provide the optimal control so that we will still be at 
the top of the final approach in the predetermined time, turnT  (see Fig.7). 
 

  
Fig.6   Optimal guidance in the perfect conditions as in Fig.4b. Fig.7   Optimal guidance with an error at TIP. 

 
Similarly, in case of wind disturbances (Fig.5b) the ability to recompute the trajectory from the current (off the 

original trajectory) conditions to the same final conditions as often as practical seems to alleviate the problem. To 
this end, Fig.8 presents two examples of handling wind disturbances with the trajectory update rate set as a function 
of tracking error. Once the tracking error while following the previously generated trajectory exceeds a certain 
amount (10ft and 15ft in Fig.8a and 8b, respectfully) a new trajectory is being generated. In Fig.8 multiple reference 
trajectories are shown with the solid lines, while a continuous parafoil trajectory is shown with a dashed line. The 
points where the old reference trajectory was abandoned are depicted with the circles, and the corresponding 
locations of the parafoil blown away from the reference trajectory by strong (up to 15% of the forward speed) 
unaccounted winds is marked with triangles. In practice, the accuracy of a GPS sensor is on the order of 10ft, so 
rather than making trajectory updates according to a sliding error as shown in Fig.8, it is also possible to time 
schedule updates. 

Although the optimal terminal guidance algorithm works well, several further adjustments need to be made in 
order to make it more robust in practice. The kinematic models in Eq.(42) does not account for parafoil turning 
dynamics and assumes that the sideslip and roll angles are small. When the turn rate is sufficiently small or the 
radius R is large, the model in Eq.(42) provides sufficient accuracy. However, in order to track the desired trajectory 
for a wide range of R, the error from sideslip and turning dynamics can be compensated by adding an additional 
commanded ψ for the first tpre seconds after the TIP has been reached. Specifically, for the first tpre seconds of the 
maneuver the command yaw rate cψ  produced by Eq.(62) is augmented as follows: 

*
c c h

turn
V

K
R

ψ ψ= −               (66) 

where Kturn is the correction gain and *
hV R is the required constant turn rate in (33). 

Disturbances from wind and sensor errors during tracking of the optimal trajectory will result in errors in final 
approach arrival. These errors can be accommodated by re-computing the optimal trajectory from the current (off 
the original trajectory) conditions to the desired final approach point during Phase 5. Re-computation of the optimal 
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trajectory is scheduled so that the specified number of updates occurs at equal intervals over the period from t0 to 
texit. 
 

       

a)   b)  
Fig.8   Optimal guidance with wind disturbance with a 10ft (a) and 15ft (b) cap on a tracking error. 

 
The final capture location xf ( x at tf in Eq.(48)) assumes that during phase 6 the parafoil travels directly to the 

target by the shortest path. In practice disturbances result in deviation from the shortest path and the guidance 
algorithm will result in a trajectory with less than perfect efficiency at reaching the target. In order to correct for 
realistic errors during the final approach the final capture location xf is corrected to be 

* des
f h app finalx V T ε=          (67) 

where finalε is the final approach efficiency. 
Figures 9 and 10 show examples of how these additions to the guidance law work for desired turn radii of 125ft 

and 325ft, respectively. In Figs. 9 and 10 the full nonlinear parafoil model is simulated with the MPC control 
algorithm described previously used to track the desired ψ angle. In both cases Tapp is 7.5s, finalε  is 0.95, t1−texit is 

3.0s, tpre is 6.0s, Kturn is 1.0, *
hV  is 22.4ft/s, xf is 88.4ft, and the wind W is -10ft/s. Results are shown from the TIP 

(x0, y0, z0) for both cases which are (−88.3ft, 250ft, −311ft) for Fig.9 and (−363ft, 650ft, −658ft) for Fig.10. As seen, 
even with a single trajectory update (Fig.9a) the parafoil lands near desired location while additional updates allow 
for more correction near the end of the trajectory (Fig.9b). In Fig.10 the longer turn allows more error to accumulate 
with even one trajectory update resulting in a sufficient correction. 

VII. Precision Placement Results 
The complete precision placement algorithm is developed by combining the loitering pattern (Phases 1 and 2), 

exit decision (Phase 3) based on terminal guidance geometry, estimation of TIP (Phase 4), and the optimal terminal 
guidance and the final approach (Phases 5 and 6). The parafoil loiters in Phase 2 continuously estimating wind Ŵ , 
air speed *

ĥV , and descent rate *
v̂V . The altitude at which to exit loitering and start towards the target startz , found by 

using Eq.(39) assumes that the parafoil is already traveling towards the target. While loitering in Phase 2 there will 
be a delay between reaching the altitude startz and when the parafoil can turn to face the target. In order achieve the 

desired final approach time des
appT , the parafoil must exit loitering delayT  seconds early. The altitude to exit loitering 

can then be estimated by using Eq.(39) using the combined time des
delay appT T+  rather than the ideal des

appT . Upon 
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exiting the loiter area Phase 4 is entered and the parafoil travels toward the target updating estimates of ˆ
switchD . The 

location where the parafoil reaches ˆ
switchD is defined as the TIP and the beginning of Phase 5. After exiting the loiter 

pattern the approach time appT  is determined by Eq.(36). Due to disturbances, measurement error, and tracking error 

appT  may not match des
appT . The optimal final trajectory is determined using the last estimates of Ŵ , *

ĥV , *
v̂V and 

appT  as outline in Section IV. While in Phase 5 the optimal final turn trajectory is continually updated until time texit , 
after which Phase 6 begins the final approach. 
 

a)   b)  
Fig.9   Optimal real-dynamics-augmented guidance with one (a) and three (b) trajectory updates with a 125ft turn radius. 
 

a)   b)   
Fig.10 Optimal real-dynamics-augmented guidance with one (a) and three (b) trajectory updates with a 325ft turn radius. 
 

The full algorithm is demonstrated through numerical integration of the nonlinear model starting from (x,y,z) of 
(−1200ft, −200ft, −2200ft). All precision placement parameters used are provided in Table 2. Winds are 10ft/s 
downrange (W = −10ft/s) both at altitude and ground level. During the final turn in Phase 5 two updates of the 
optimal trajectory are used. In all phases of guidance the MPC algorithm based on the linear parafoil approximation 
is used to track the desired ψ angle. 

Results of the algorithm are shown in Figs. 11 to 13. Progression of algorithm phases is shown by triangles 
representing the transition to the next guidance phase, with the first transition marking the beginning of Phase 2. The 
trajectory is shown in Fig.11 with the four loiter region points marked by x’s, optimal trajectory updates marked by 
squares, and the final target by a circle. Upon entering Phase 2 the parafoil circles the loiter region in a clockwise 
direction. 
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Table 2.   Parameters  of the precision placement algorithm. 
Parameter Value 

Away distance 750 ft 
Cycle distance 400 ft 

Final turn radius, R 125 ft 
des

appT  7.5 s 

delayT  6.5 s 

kψ  400 

maxjψ  20 °/s 
tpre 6.0 s 

t1 - texit 3.0 s 
finalε  0.95 

Kturn 1.0 
 

 
Fig.11   Precision placement trajectory. 

 
Figure 12 shows the estimation of the exit altitude startz  from Eq.(39) based on current wind estimates, the approach 

time des
appT , and transition delay delayT . Transition from Phase 2 to 3 occurs when the altitude reaches startz  at 120 

seconds at an altitude of 732ft. Figure 13 shows that appT  is 14.0s ( des
appT + delayT ) when Phase 3 is entered. Transition 

to Phase 4 occurs at 133s at which time appT  has decreased to 6.9 seconds due to the time required to make the turn 

exiting the loitering region. During Phase 4 it can be seen that the required appT  continues to vary as tracking error 

and wind estimates change. In Phase 4 the transition to the final turn occurs when ˆ
switchD , the estimated distance to 

pass the target, is reached. Figure 12 shows ˆ
switchD− , where the value is positive when the parafoil must turn before 

reaching the target and negative if the turn is to occur after passing the target. Early in the trajectory ˆ
switchD− is 

much less than zero demonstrating if a turn to target was performed at that time the parafoil would need to pass the 
target by a large amount before turning because of it current altitude. Transition from Phase 4 to 5 occurs when the 
distance to target L reaches ˆ

switchD− at 154 seconds with the parafoil 62ft ahead of the target. Two updates of the 
optimal final turn trajectory occur before transition to Phase 6 at 169 seconds. Final impact occurs at 2ft cross range 
and 8ft down range at 180.0 seconds. 
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Fig.12   Terminal guidance decision variables. Fig.13   Final approach time. 

 
Monte Carlo simulations of 50 drops were completed using the complete precision placement algorithm. 

Gaussian noise was injected into measured position, altitude, and inertial sensors. In addition to sensor errors, two 
sources of wind variation were added to the simulation; varying direction and varying ground wind magnitude. 
Wind was assumed to have a constant magnitude prior to terminal guidance. Wind magnitude varied linearly from 
W at the TIP altitude to WF at the ground. Prevailing wind was assumed by the system to travel down range at a 
heading of zero degrees while the true wind varied in its direction. For all simulations, the target was set as the 
origin. Sensor noise and wind variation statistics are listed in Table 3. Dispersion results are shown in Fig.14. The 
resulting CEP is 55.1ft shown by the circle and is defined by the radius which includes 50 percent of the impacts. 
The results of real drops made at Camp Roberts, CA and Yuma Proving Ground, Yuma, AZ in the course of 2008 
are discussed in Ref.38. 

 
Table 3.   Error statistics. 

Parameter Mean Standard deviation 

Initial position x -1500 ft 250 ft 
Initial position y 0 ft 250 ft 
Initial position z -3000 ft 250 ft 
GPS x bias  0.0 ft 2.0 ft 
GPS y bias  0.0 ft 2.0 ft 
GPS x deviation 1.5 ft 0.0 ft 
GPS y deviation 1.5 ft 0.0 ft 
Altitude bias 0.0 ft 7.5 ft 
Altitude variation 1.5 ft 0.0 ft 
Roll, pitch and yaw bias 0.0 deg 2.0 deg 
Roll, pitch and yaw deviation 1.0 deg 0.0 deg 
u, v and w bias 0.0 ft/s 0.25 ft/s 
u, v and w deviation 0.5 ft/s 0.0 ft/s 
p, q, and r bias 0.0 deg 1.0 deg 
p, q, and r deviation 1.0 deg 0.0 deg 
W -10.0 ft/s 3.3 ft/s 
WF -10.0 ft/s 3.3 ft/s 
Wind heading error 0.0 deg 15.0 deg 
 



19 
American Institute of Aeronautics and Astronautics 

19

 
Fig.14   Monte Carlo simulation dispersion. 

 

VIII. Conclusion 
Using a simple kinematics model, an algorithm was developed allowing an aerial delivery system to predict a 

when to exit its loitering pattern. The algorithm allowed the system, in the presence of winds, to approach the target 
at an altitude, so that a final turn could be completed with the target being reached when impacting the ground. 
Uncertainty in winds, sensors, and guidance resulted in the system arriving only approximately at the predicted final 
approach location. In order to improve accuracy, a final turn reference trajectory based on the inverse dynamics in 
the virtual domain was generated. The method efficiently computes a reference trajectory solution to the two-point 
boundary-value problem using the current state of the aerial delivery system. Efficient computation allowed the 
trajectory to be recomputed during the final turn adding robustness to changing winds and tracking errors. The 
complete precision placement algorithm including; trajectory tracking, loiter exit decision, and final turn, was 
demonstrated through Monte Carlo simulations. The resulting algorithm had a circular error probable of 55.1ft for 
the example aerial delivery system. 

 
 

Appendix: Model Parameters 
System mass m, slug:     0.162 
Steady state aerodynamic velocity aV , ft/s:   24.0 
Canopy reference area pS , ft2:    11.0 

Canopy span b , ft:     4.45 
Canopy chord c , ft:     2.47 
Incidence angle Γ , deg.:     −12 
Inertia matrix elements, slug·m2:    xxI =0.312, yyI =0.296, zzI =0.039, xzI =0.022 

Elements of the apparent mass matrix . .a mI , slug:  A =0.008, B =0.0022, C =0.029 
Elements of the apparent inertia matrix . .a iI , slug·m2:  P =0.04, Q =0.10, R =0.0018 
x-distance from mass center to apparent mass center BMx , ft: 0.15 
z-distance from mass center to apparent mass center BMz , ft: −3.64 

Maximum brake deflection d , in:    5 
Aerodynamic coefficients: 0DC =0.25, 2DC α =0.12, YC β =−0.23, 0LC =0.091, LC α =0.90, 

0mC =0.35, mC α =−0.72, mqC =−1.49, 

lC β =−0.036, lpC =−0.84, lrC =−0.082, l aC δ =−0.0035, 

nC β =−0.0015, npC =−0.082, nrC =-0.27, n aC δ =0.0115. 
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